2x^2/(5+5x-10x^2)=2

Simple and best practice solution for 2x^2/(5+5x-10x^2)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2/(5+5x-10x^2)=2 equation:



2x^2/(5+5x-10x^2)=2
We move all terms to the left:
2x^2/(5+5x-10x^2)-(2)=0
Domain of the equation: (5+5x-10x^2)!=0
We move all terms containing x to the left, all other terms to the right
-10x^2+5x!=-5
x∈R
We multiply all the terms by the denominator
2x^2-2*(5+5x-10x^2)=0
We multiply parentheses
2x^2+20x^2-10x-10=0
We add all the numbers together, and all the variables
22x^2-10x-10=0
a = 22; b = -10; c = -10;
Δ = b2-4ac
Δ = -102-4·22·(-10)
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-14\sqrt{5}}{2*22}=\frac{10-14\sqrt{5}}{44} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+14\sqrt{5}}{2*22}=\frac{10+14\sqrt{5}}{44} $

See similar equations:

| 2x^2/(5+5x-10x^2)=1 | | 2x^2=1.2416*10^-9(5+5x-10x^2) | | 3y+27=72 | | 5x=10+2 | | 2/7=1/2+1/a | | 9x=3=30 | | 3x^2+10x-9000=0 | | 2/7=1/3+1/a | | 5(x+4)=5 | | 3x^2-10x+9000=0 | | -10x/(+2/5)=0 | | -10/(+2x/5)=0 | | 8=1000+3x | | 8(x-1)=(6x-26) | | x*5-32=x*3-10 | | y+×=405 | | (16,5+13x)-15x=0 | | 16x-128=-4x+-152 | | 70x^2+21x-7=0 | | 4*(x+5)=36 | | 1/2x+7/5=3+1/5x | | m+87=403 | | 4x=2x= | | 8x+4x^2=240 | | 2^x-3.3^2x-8=36 | | 5x4+4=4x4+3 | | 4x/x4-1=0 | | 55852,05=600*x^2,25 | | -15x^2+42x-24=0 | | 3(x−9)(x−2)−(x−7)(x−9)=0 | | a*3+6=1 | | x+22=4+3x |

Equations solver categories